The Phylogenetic Likelihood Library
نویسندگان
چکیده
We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as likelihood calculations, model parameter as well as branch length optimization, and tree space exploration. The highly optimized and parallelized implementation of the phylogenetic likelihood function and a thorough documentation provide a framework for rapid development of scalable parallel phylogenetic software. By example of two likelihood-based phylogenetic codes we show that the PLL improves the sequential performance of current software by a factor of 2-10 while requiring only 1 month of programming time for integration. We show that, when numerical scaling for preventing floating point underflow is enabled, the double precision likelihood calculations in the PLL are up to 1.9 times faster than those in BEAGLE. On an empirical DNA dataset with 2000 taxa the AVX version of PLL is 4 times faster than BEAGLE (scaling enabled and required). The PLL is available at http://www.libpll.org under the GNU General Public License (GPL).
منابع مشابه
BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics
Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-th...
متن کاملDPRml: distributed phylogeny reconstruction by maximum likelihood
MOTIVATION In recent years there has been increased interest in producing large and accurate phylogenetic trees using statistical approaches. However for a large number of taxa, it is not feasible to construct large and accurate trees using only a single processor. A number of specialized parallel programs have been produced in an attempt to address the huge computational requirements of maximu...
متن کاملPylogeny: an open-source Python framework for phylogenetic tree reconstruction and search space heuristics
Summary. Pylogeny is a cross-platform library for the Python programming language that provides an object-oriented application programming interface for phylogenetic heuristic searches. Its primary function is to permit both heuristic search and analysis of the phylogenetic tree search space, as well as to enable the design of novel algorithms to search this space. To this end, the framework su...
متن کاملفیلوژنی مولکولی جنس Eumeces Wiegmann, 1834 (خزندگان: سینسیده) در ایران، براساس DNA میتوکندریایی ژن 16S
Phylogenetic relationships among the Eumeces schneiderii princeps and Eumeces schneiderii pavimentatus investigated using 509 bp partial sequences of 16S mitochondrial gene. Analyses were done by maximum-likelihood (RAxML) criteria on 52 specimens from over 20 geographically distinct localities. Our molecular results proposed two well-supported major clades by their phylogenetic positions, gene...
متن کاملA Surrogate Function for One-Dimensional Phylogenetic Likelihoods.
Phylogenetics has seen a steady increase in data set size and substitution model complexity, which require increasing amounts of computational power to compute likelihoods. This motivates strategies to approximate the likelihood functions for branch length optimization and Bayesian sampling. In this article, we develop an approximation to the 1D likelihood function as parametrized by a single b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 64 شماره
صفحات -
تاریخ انتشار 2015